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ABSTRACT

Around 1970, the YF-12A loads and structures efforts focused on numerous technological issues that
needed defining with regard to aircraft that incorporate hot structures in the design. Laboratory structural
heating test technology with infrared systems was largely created during this program. The program dem-
onstrated the ability to duplicate the complex flight temperatures of an advanced supersonic airplane in a
ground-based laboratory. The ability to heat and load an advanced operational aircraft in a laboratory at
high temperatures and return it to flight status without adverse effects was demonstrated. The technology
associated with measuring loads with strain gages on a hot structure was demonstrated with a thermal cal-
ibration concept. The results demonstrated that the thermal stresses were significant although the airplane
was designed to reduce thermal stresses. Considerable modeling detail was required to predict the heat
transfer and the corresponding structural characteristics. The overall YF-12A research effort was particu-
larly productive, and a great deal of flight, laboratory, test and computational data were produced and
cross-correlated. 

INTRODUCTION

More than 20 yr have passed since completion of YF-12A Thermal Loads and Structures Program.
This program was one of the most comprehensive flight and laboratory hot structures and loads research
efforts ever undertaken (ref. 1). The primary tools used to accomplish this program were the triple sonic
YF-12A aircraft and the NASA Dryden Flight Research Center (DFRC), Thermostructures Research
Facility, Edwards, California. This facility is a major ground-based aeronautical high-temperature
research laboratory. Computational efforts associated with the flight and laboratory also enhanced these
activities. Few high-speed vehicles have evolved in the past 25 yr; therefore, the science of dealing with
major aerodynamically heated flight structures has been minimally developed. The basic technical
approaches to conducting the program, coupled with the technical results, are still a model worthy of his-
torical documentation. An unusually long period of classification, the large amount of elapsed time since
the effort was completed, and the diminishing number of people associated with the program who are still
professionally active is posing the threat of losing the importance and the details of the effort.

This paper describes the salient technical results of the YF-12A structures and loads efforts, so the
experiences and results can be preserved. Use of trade names or names of manufacturers in this report
does not constitute an official endorsement of such products or manufacturers, either expressed or
implied, by NASA.

BASIC TECHNICAL ISSUES AND ASSOCIATED HISTORY

Aeronautical interests of the 1950’s and 1960’s greatly emphasized high-speed aircraft. Such interests
resulted in aircraft, such as the X-15 and XB-70 (North American Aviation, Downey, California), F-111
(General Dynamics, Fort Worth, Texas), and YF-12A and SR-71 (Lockheed Corporation, Burbank, Cali-
fornia) aircraft (refs. 1–6), which were all directed toward speeds of Mach 2.7 or greater.   Before devel-
opment of these aircraft, there was an evolving science directed toward measuring flight loads on
airplanes using calibrated strain gages. The advent of aircraft with Mach 2.7 plus capabilities introduced
a problem that complicated the measurement of loads with strain gages. Aerodynamic heating of the
structure was so intense that significant structural temperature nonuniformities resulted in major thermal
stress fields within the structures of these high-speed aircraft. These thermal stress fields resulted in an



   
additional component of strain that affected the strain gage calibration used to measure the flight loads.
Strain gages used on these high-speed aircraft sensed responses to the aerodynamic loads and thermal
stresses. This response created a major problem in the l960’s because verifying the design of a new mili-
tary aircraft required conducting a flight loads survey and structural integrity flight demonstration using
calibrated strain gages as the verifying tool. This approach was dictated by military specifications for
new aircraft.

The major problem with measuring strain gage loads on hot structures was first addressed on the
X-15 aircraft. Strain gage flight loads were never measured on the X-15 because of the extreme tempera-
tures and the thermal stress fields (refs. 7 and 8). The X-15 Program resulted in a recognition that a need
existed to understand the effects of temperature on strain gages and structures. This lack of understanding
led to the construction of a major ground-based laboratory capable of heating an entire aircraft (ref. 9) at
NASA DFRC in the late l960’s. The facility was built to help understand high-temperature effects on hot
aircraft. The laboratory was originally called the Flight Loads Research Facility and is presently called
the Thermostructures Research Facility.

Computational software, such as NASA Structural Analysis (NASTRAN), was available in the
1960’s which could provide thermal stress computing capabilities; however, computers had little capac-
ity to conduct large computations. Because little could be done about this problem computationally, it
was decided to attack the problem experimentally. The basic approach involved heating the structure on
the ground in a laboratory to the exact temperature environment that the structure witnessed in flight.
This temperature environment would impose a thermal stress field on the structure identical to that which
occurred in flight. The responses of the strain gages measured in the laboratory would serve as a correc-
tion for the flight data. Hence, the thermal response of the strain gages could be deducted from the total
flight response, leaving only the aerodynamic responses from which loads could be derived. 

It was planned to demonstrate this approach on one of the canards on the XB-70 aircraft. The canard
was to be instrumented with strain gages and thermocouples and then flown to Mach 3. The measured
thermal field at Mach 3 was to be applied to the canard in the laboratory which would result in correc-
tions which could be applied to the flight data. This plan went awry when the XB-70 airplane that was to
be used was lost in an accident in l967. The single remaining XB-70 airplane was retired shortly thereaf-
ter when the program was terminated.

Shortly after the XB-70 accident, several YF-12A aircraft became available to the NASA Flight
Research Center for research activities. One of the aircraft was identified for flight loads measurement
research. The bold approach was adopted. This approach used the entire airplane as the test specimen;
therefore, the entire airplane was instrumented with strain gages and thermocouples, flown to Mach 3,
and heated in the ground-based infrared-heating laboratory to obtain corrections for the strain gages. The
remainder of this paper tells the story of an unusually complete and unique scientific program. Partly by
coincidence and partly by design, this program simultaneously brought together an exceptional aircraft, a
powerful ground-based heating laboratory, the computational tools of the day, and an appropriate techni-
cal group. 

YF-12A LOADS MEASUREMENT SCENARIO

The primary objective of the YF-12A loads and structures effort was to measure the aerodynamic
forces on the airplane in flight with calibrated strain gages. The sustained Mach 3 cruise capabilities
along with other advanced design features rendered this airplane the most challenging choice. The
2



      
thermal environment is appropriately depicted in figure 1 where surface temperatures up to 600 °F are
seen (ref. 10). Bearing this thermal environment in mind, extensive onboard instrumentation, such as
strain gages, thermocouples, and deflection measuring targets and cameras, was installed within the
structure. An extensive loading system was designed and built to calibrate the installed strain gages. An
even more complex heater system was also designed and constructed to simulate the thermal environ-
ment which the structure experienced during flight. The installed sensors, loading, heating, and flights
provided the baseline information from which the research effort evolved.

Figure 1. The YF-12A aircraft with upper surface temperature contours (ref. 10).

It was realized that related technology areas should be explored in association with the basic flight
loads program. In addition to the primary objective, many less visible, but just as important, activities
were achieved with significantly less effort and resources. The generation of extensive laboratory temper-
atures, stresses, and deformations with respect to a heated and loaded airplane provided an opportunity to
study many subtechnologies, such as verification of codes associated with load equation derivations,
deformation predictions, stress calculations, and temperature predictions. Other technological studies
involved sensor technology with regard to high-temperature strain gages and thermocouples, in-flight and
laboratory structural deflection measuring systems, aircraft loading technologies, infrared-heating tech-
nology, and data acquisition and control science.

Basic Airplane Structure

Figure 2 shows the structural skeleton of the YF-12A airplane (ref. 11). The fuselage structure and
engine nacelles are formed as a ring-stiffened structure. The wings are constructed from multiple spars
and ribs. The aircraft structure was fabricated primarily from several titanium alloys.
3



    
Figure 2. Structural skeleton of the YF-12A aircraft (ref. 11).

Strain Gage Response to Load

An aircraft that flies at speeds sufficient to result in significant structural heating has special problems
associated with attached strain gages and the associated structure. Figure 3 shows two of these effects.
The hot strain gage output may indicate a zero shift or what may be called a thermal shift which can
result from two sources. The shift (i.e., from A to B) may result from the apparent strain of the strain gage
which arises from the mismatch of the thermal expansion characteristics of the strain gage material and
4
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the material to which the strain gage is attached, for example, the substrate. If the temperature field of the
structure is nonuniform, then a thermal stress field results in the airplane structure which also is sensed by
the strain gages as a shift. 

The second effect is seen as a slope change, such as from B to C (fig. 3). A change in the response of
the strain gage to loads (slope change) may be caused by several factors. The increased temperatures may
be sufficient to reduce the modulus of elasticity of the structural component. This reduction in elasticity
would increase the response of the strain gage to the load. The higher operating temperature of the strain
gage may also change the response of the strain gage to load (gage factor). The third manner in which the
slope could change results from actual load path alterations because of differential stiffness changes
among the spars and ribs.

Thermal Calibration of the YF-12A Airplane

Any attempt to computationally account for individual thermal effects would have resulted in an
extremely large, and perhaps impossible, effort. The idea of an experimental correction to the flight data
was very attractive because no complicated or uncertain computations were required. Figure 4 shows the
basic approach to using the thermal calibration (ref 12). The value of the thermal correction (thermal
load) to the strain gages was obtained by applying the flight-measured temperatures of the aircraft to the
structure on the ground using an infrared heating test. Once the thermal correction (load) is known, then
the flight test data can be corrected by deducting the thermal part of the load from the total load. The
remainder is the response of the strain gage to the aerodynamic part of the load.

Figure 4. Aerodynamic and thermal components of load relative to flight profile (ref. 12).

Structural Details

The YF-12A airplane designer incorporated several features within the structure to provide relief
from thermal expansion. Figure 5 shows the general nature of the wing structure (refs. 10 and 13). Stand-
off clips were included to minimize the transference of thermal expansion to the substructure from the hot
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Figure 5. Thermal expansion relief on the YF-12A wing structure (refs. 10 and 13).
skins. These stand-off clips also minimized the heat conduction paths to the substructure. The skin panels
also included significant beading to allow flexible thermal expansion rather than thermal stress build up. 

Note the complexity of the YF-12A structure. Computer models will be introduced later in the paper
from which computational predictions are compared to experimental results.

Figure 6 shows selected details of the wing structure (ref. 14). With such drastic differences in detail,
the modeling idealizations are not an easy task.

HEATING THE YF-12A AIRPLANE

Heating the YF-12A airplane was a challenging endeavor. The airplane required considerable prepa-
ration before laboratory heating. Note that this airplane was to undergo extensive loading and heating in a
laboratory and then be reinstated as a flying airplane, so the tests did not involve what could be consid-
ered an ordinary test specimen. The major concern with heating the airplane in the laboratory was the
possibility of an explosion. The JP-7 fuel used in this airplane can autoignite at temperatures slightly over
400 °F. Many fuel tanks exist throughout the fuselage and wings, and a great deal of insulation is also
installed throughout these areas. These fuel tanks had significant leaks; hence, the insulation in many
areas contained residual fuel. The explosive hazard was a serious concern, and appropriate precautions
were taken.

The general thermal environment of the YF-12A structure involved a hot skin with a cooler substruc-
ture. In some locations however, the substructure was hotter than the skin area. These locations were
attributed to either heat from the engine or hot boundary-layer air entering the structure through drain
holes in the skins. The heating profile in figure 7 typifies a Mach 3 flight where an acceleration period
results in increasing skin temperatures (ref. 10). Such temperatures rapidly come to an equilibrium
6



 

situation when the Mach 3 cruise condition is reached. The substructure lags the skin temperatures at
first, but late in the flight the substructure reaches near steady state. The time history of figure 7 gives the
reader a feel for the nature of the heating simulation required.

Figure 6. Difference in substructural detail (ref. 12).

Figure 7. Time history of typical wing spar temperature distribution (ref. 10).
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Heater Configuration and Control Zones 

The heating of the airplane was formulated around five primary heater areas (fig. 8). These heaters
were arranged for ease of removal from the airplane and to facilitate inspection and repair. One large
heating system built on rollers was used to heat the aft section of the airplane. The middle of the airplane
was heated with lower heaters on rollers and two upper sections which could be moved up and down sim-
ilar to a drawbridge. The forebody was heated with two systems which rolled into heating position from
the side. 

Figure 8. Heater panel configuration.

The five primary heaters were further subdivided into many heater control zones. Each was con-
trolled by a surface thermocouple. The required zonal temperatures were achieved by controlling surface
temperatures on the airplane at approximately 600 locations on one symmetrical half of the airplane.
Duplicate zones on the opposite side of the airplane were controlled in parallel.   Surface thermocouples
were installed on selected duplicate zones. Temperatures obtained from these thermocouples were used
to verify that the temperatures on the opposite side of the airplane agreed with the corresponding control
zone temperatures. Figure 9 shows the distribution of heating control zones for the lower side of the air-
plane, and figure 10 shows the typical heater and control zones (ref. 13). 

A nacelle heater was also included to simulate the exact three-dimensional temperatures in the engine
area. Figure 11 shows a sketch of the nacelle heater (ref 14).

One-half of the forebody heater is shown in the foreground of figure 12 in a retracted position. The
background shows the upper middle heaters in the raised position. A somewhat clearer view of the upper 
8



 

Figure 9. Distribution of lower surface heater control zones (ref. 13).

Figure 10. Typical zoning arrangement and control thermocouple location (ref. 13).
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Figure 11. Nacelle heater location (ref. 14).

EC 3707

Figure 12. Front heater and upper middle heater in retracted position.
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middle heater is shown in figure 13. In figures 12 and 13, the lamps are undergoing checkout tests.
Figure 14 shows the aft heater in the retracted position. Figure 15 shows the nacelle heater during lamp
installation. Figure 16 shows the aft heater and the middle heater in position to heat the airplane. Refer-
ences 13–15 provide an extensive description of the details of the heating and the control of the heating
processes. 

EC 3705
Figure 13. Both sides of the upper middle heater.

EC 3717
Figure 14. Rear heater in retracted position.
11



     
EC 3724
Figure 15. Nacelle heater.

EC 3723
Figure 16. Rear and middle heaters in the aircraft heating position.

Airplane Preparation for Heating Tests

Because the YF-12A airplane would be returned to flight status following the heating tests, extensive
preparation was required before the heating simulation could be performed. The vertical tails, nose cone,
and engines were removed for the heating test (fig. 17) (ref. 14). The presence of these components has
no affect on the ultimate result of the thermal calibration. The fuel used by this airplane autoignites when
temperatures exceed 400 °F; therefore, special precautions were required to prevent an explosion during
12



       

Figure 17. Airplane preparation for laboratory heating tests (ref. 14).
the laboratory heating. The fuel-soaked insulation was removed and replaced with dry insulation. The
fuel tanks were flushed with a solvent and wiped dry. During the heating test, these tanks were purged
with gaseous nitrogen, and the oxygen content was monitored.

Results of the Heating Simulation

Figure 18 compares the flight-measured temperatures (symbols) and the laboratory heating simula-
tion (lines) at three forebody locations (ref. 14). Upper and lower fuselage stiffener temperatures and the
temperature of the fuel tank skin are shown. The overall agreement between flight and simulated temper-
atures is good. For the upper fuselage, however, the simulation under predicted the flight data by 15° to
20° F. This difference results from using radiant heating to simulate aerodynamic heating. Because of the
basic difference in the way heat is transferred, the radiant heating rate in areas of increased structural
mass will be lower than the aerodynamic heating rate (ref. 7).

Figure 19 shows additional comparisons at three points in the aft portion of the airplane (ref. 14). The
laboratory heating resulted in close agreement at the nacelle skin and dry bay skin areas. Laboratory tem-
peratures at the fuel tank skin exceed the flight temperatures. This disparity was caused by the difference
in amounts of fuel. An in-flight airplane carries fuel; whereas, this laboratory test was conducted with a
dry fuel tank. The fuel acts as a thermal heat sink. The simulation and flight values converge after the fuel
has been expended. Strain gage data from flight in this area could not be corrected until the laboratory
and flight temperatures converged, and a meaningful correction could be established.
13



 

Figure 18. Results of the Mach 3 heating simulation in the forebody area (ref. 14). 

Figure 19. Results of the Mach 3 heating simulation in the skin area (ref. 14).

The results shown in figure 20 further illustrate the difficulty of duplicating the skin temperatures in
the fuel tank areas (ref. 14). A single control zone was used to heat the fillet and fuel tank skin. This zone
also indirectly heated the spar cap. Because the temperatures of the fillet and fuel tank were so different
during the first 16 min of the flight profile, duplicating both temperatures was impossible. Smaller con-
trol zones could have solved this problem, but reducing these zones was not possible for the test. Conse-
quently, in an attempt to produce the correct heating load at the spar caps and corresponding strain gages
in these areas, the control zone temperatures were programmed to duplicate the average measured
temperatures of the fillet and fuel tank skin. This approximation to the surface heating proved quite
successful as indicated by the good agreement between the measured and simulated spar cap tempera-
tures (fig. 20). 
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Figure 20. Results of the Mach 3 heating simulation in the skin, fillet, and spar cap (ref. 14).

Radiant Heater Augmentation with Hot Nitrogen Gas

In areas where internal heat sources existed, such as from engine heat or hot gages entering through
drain holes, special heating measures were required. In the area shown in figure 21, the initial simulation
(solid line) was quite in error (ref. 14). The first attempt to correct this problem involved preheating the
area with the radiant heaters (dashed line). This preheating approach did not correct the problem. In the
long run, however, by injecting heated gaseous nitrogen into the substructure, an acceptable simulation
was achieved.

Figure 21. Results of radiant heater augmentation with hot nitrogen gas (ref. 14).
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Figure 22 shows the heating of the airplane. These tests were conducted late at night because of the
anticipated power requirements. The heater system was much more efficient than expected, so the night
tests were eventually discontinued, and this work was completed during the daytime.

EC 3708
Figure 22. Rear view of YF-12A airplane during a radiant heating test.

YF-12A LOAD CALIBRATION

This section describes the laboratory mechanical loading of the YF-12A, the manner in which the
loads were applied to the aircraft, and the method of restraining the aircraft. Two structural models are
presented, and comparisons of predicted and measured influence coefficients, stresses, and deformations
are made.

Wing Loading and Strain Gages

The basic approach in a wing strain gage calibration is to load the wing at a series of chord and span
locations, record the strain gage response to the grid of loads, and develop loads equations which relate
applied loads, such as shear, bending and torque, to strain gage outputs (ref. 16). References 11 and 17
provide additional information specifically relating to the load calibration of the YF-12A wing. The strain
gages in the YF-12A wing area were calibrated for load to be the upward loading of the wing from the
bottom. An overhead restraining system, consisting of loading jacks, was programmed to maintain a con-
stant gear load (figs 23 and 24) (ref 11). The landing gear rested on roller-bearing plates which allowed
translation in the plane of the wing. Position transducers provided information about the out-of-plane
deformation of the wing during loading (fig. 24).

Figure 25 shows two of the loading cases (ref. 18). The top case involved loading the engine nacelle
upwards and reacting the load with overhead jacks to maintain a constant gear load. The bottom case
involved loading the outboard wing at two points and again reacting the loads overhead to maintain a
constant gear load. The plan included measuring loads at three outboard wing stations (W.S.). Extensive
strain gage instrumentation was located at W.S. 35, 111, and 215 (fig. 26) (ref. 11). The strain gage
instrumentation consisted of four active arm strain gage bridges.
16



 

Figure 23. Fuselage reaction fixture for load tests. (ref. 11).

Figure 24. Fuselage reaction and deflection measurement system.
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Figure 25. Typical point load calibration conditions (loads in newtons, lb) (ref. 18).
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Figure 26. Strain gage bridges on YF-12A wing. Numbers in parentheses identify bending bridges. Num-
bers without parentheses identify shear bridges (ref. 11).
19



   
Comparison of Measured and Computed Stresses

Load equations relating aerodynamic forces to strain gage bridge outputs are derived from the load
calibration of the aircraft. Influence coefficients (strain gage response divided by load) are calculated
from the results of the laboratory load calibration. Influence coefficient plots that show the influence of a
unit load in the span and chord direction. These plots are frequently used as an aid in identifying which
strain gage bridges to use in various load equations. Because extensive experimental data were generated,
two structural computer models were developed for use in conducting a general evaluation of the state-
of-the-art in computing strains. The first avenue of interest was directed toward developing a simple
NASTRAN model (ref. 19). This model could be used to determine how well computed influence coeffi-
cient plots would compare to plots generated from the laboratory data. Figures 27(a) and 27(b) show the
simple model used to determine if influence coefficient plots could be predicted (ref. 20).

(a) YF-12A structural skeleton. (b) Simple structural model.

Figure 27. Structural skeleton of YF-12A airplane with simple structural model (ref. 17).

Figure 28 shows measured shear influence coefficient plots for three strain gage bridges on the
YF-12A wing (ref. 20). The measured values are shown on the left, and the calculated values are shown
on the right. The influence coefficient plots near the center and aft of the wing root correlate quite closely
in terms of shape and magnitude. The strain gage bridge located forward, near the apex of the wing, cor-
relates in influence coefficient plot shape but not in magnitude. This comparison shows promise of pre-
dicting influence coefficients using relatively simple models to represent delta wings.

Figures 29(a) and 29(b) show a comparison of measured and calculated influence coefficients for
bending strain (ref. 20). Both the shape and magnitude of the measured bending moment influence coef-
ficient plots for the YF-12A wing correlate with the calculated values. This result is typical for bending
bridges. 

Figure 30 shows an extensive NASTRAN model (ref. 18). This model was generated using rod, bar,
and shear panel elements. In the 1960’s, this model represented near state-of-the-art computer technology
capacity. The model size required that the problem be run in six pieces. Figure 31 shows additional detail
concerning the nature of the model (ref. 18). The diverse combination of elements results from the neces-
sity to reduce the number of degrees of freedom. 
20



 

Figure 28. Comparison of measured and calculated influence coefficient plots for shear strain (ref. 17).
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(a) Measured. (b) Calculated.

Figure 29. Comparison of measured and calculated influence coefficient plots for bending moment
(ref. 17).

Figure 30. Large NASTRAN structural model of YF-12A airplane (ref. 18).
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Figure 31. The YF-12A structure and the large NASTRAN model at fuselage station 1130 (ref. 18).

Figure 32 shows a comparison of the predicted shear stresses with those measured for one calibration
test condition using the large structural model (fig. 30) (ref.18). Measured shear stresses interpreted from
wing strain gages from the load calibration tests are compared to predictions obtained from the large
NASTRAN structural model. Some discrepancies were evident between the measured and computed
values. 

Figure 32. Comparison of NASTRAN-predicted shear stresses with those measured for a calibration test
condition (ref. 18).

Figure 33 shows a similar comparison for bending stresses (ref. 18). The measured bending stresses
(solid symbols) and the computed bending stresses (open symbols) correlate quite closely. 
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Figure 33. Comparison of NASTRAN-predicted bending stresses with those measured for a calibration
test condition (ref. 18).

Comparison of Measured and Computed Deflections

Deflections of the airplane were measured during the load calibration. The predicted deflections
derived from the large NASTRAN structural model compared quite closely to the laboratory tests
(fig. 34) (ref. 18). These data presented ranges from fuselage centerline deformations (W.S. 0) to deflec-
tions near the wing tip (W.S. 290).

Figure 34. Comparison of NASTRAN-predicted deflections for a typical loading condition (ref. 18).
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THERMAL STRESSES AND DEFORMATIONS

Thermal stresses on the YF-12A airplane contributed to much of the difficulty associated with mea-
suring aerodynamic loads with strain gages. The thermal stress measurements were difficult to verify
because the strain gages used on the YF-12A airframe were wired as four active arm bridges. These
bridges do not lead to the discrete stress measurements required for code verification of thermal stress.
Although thermal models were quite detailed, structural models were inadequate in element detail to pre-
dict thermal stresses. The thermal deformations of the heated airplane in the laboratory were adequately
established and were compared to computed thermal deformations.

Strain Gage Configuration

Four active arm strain gage bridges were used to measure flight loads on the YF-12A airplane
(fig. 35). The basic approach is to locate the four arms of the bridge such that all strains are additive, thus
maximizing the output. This approach provides summary strains. If the objective is to verify a computa-
tional code, then measuring discrete strains is necessary. As a result, a major incompatibility ensues when
flight load strain instrumentation is to be used to verify structural models because thermal stress fields are
usually quite irregular. The discrete thermal stresses at the location of each of the four active arm strain
gages of the bridge is usually of drastically differing magnitudes; therefore, only some average value for
the four strain gages is possible.

Figure 35. Typical strain gage bridge installation for flight loads measurement.

Prediction of Thermal Stress 

The data presented in figures 36(a) and 36(b) illustrate the significance of the thermal component of
the total strain gage bridge output. Although the structure was designed to minimize thermal stress, the
thermal effects were the significant, and in some cases, the dominant, stress. Note that these data demon-
strate that the thermal calibration was necessary to obtain aerodynamic loads. 
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(a) Dominate flight load.

(b) Dominant thermal load.

Figure 36. Comparison of strain gage bridge outputs due to a Mach 3 thermal calibration test and a
Mach 3 flight. 

Figure 37 shows flight-measured temperatures for four periods (ref. 10). The temperature gradients
are greater during the early times of the flight. This density of thermocouple coverage was typical. The
number of thermocouples was adequate to ensure that good simulation of the temperature distributions
was achieved in the laboratory. On the other hand, the number was inadequate to define the temperature
field of the structure for code verification. Verification of structural codes was just too great a task for
that era. Considerable structural detail must be incorporated into the modeling to accurately predict tem-
peratures and thermal stresses (refs. 21–23). Attempts to verify thermal stress codes were met with disap-
pointment caused by three factors: 

• The structural model detail required was, from a practical point of view, beyond the existing state
of the art.

• Strain gage bridges are inappropriate for discrete thermal stress measurement.

• Additional extensive substructure temperature measurements were needed.
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Figure 37. Distribution of typical temperatures in a YF-12A wing spar (ref. 10).

Prediction of Thermal Deformations

Deformations of the airplane were measured in the laboratory during the heating and loading tests and
during flight test. Figure 38 shows the camera system used to measure flight deformations (ref. 24). The
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Figure 38. The YF-12A inflight deflection measuring system (ref. 24).



   
light from a strobe was reflected from corner reflectors mounted on posts which were attached to the
airplane. The reflected light was recorded on film photographically, and these data were analyzed using
vector graphics. Deflections of the airplane during heating tests were measured with deflection transduc-
ers. The large structural model was used to predict the thermal displacements during the heating tests
(fig. 30).

Thermal deformations are much easier to predict than discrete stresses. The solid symbols shown in
figures 39(a) and 39(b) represent aircraft deformations measured in the laboratory during a heating test
(ref. 18). The open symbols represent the deformations predicted with the large NASTRAN structural
model for the same heating condition. Correlation between measured and predicted thermal deformation
is quite close.

(a) Fuselage centerline.

(b) Wing station 35.

Figure 39. Comparison of measured and predicted aircraft thermal deformations for the YF-12A airplane
(ref. 18).

CONCLUDING REMARKS

The heating of the YF-12A airplane provided a focus on numerous technological issues that needed
defining with regard to aircraft that incorporate hot structures in the design. Laboratory structural heating
test technology with infrared systems was predominately created with this program. The program demon-
strated the ability to duplicate the complex flight temperatures of an advanced supersonic airplane in a
ground-based laboratory. The ability to heat and load an advanced operational aircraft in a laboratory at
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high temperatures and to return the aircraft to flight status without adverse effects was also demonstrated.
The technology associated with measuring loads with strain gages on a hot structure was demonstrated
using the thermal calibration concept.

The results demonstrated that the thermal stresses were significant although the aircraft was designed
to reduce thermal stresses. In some cases, the thermal stresses were significantly larger than the load
stresses. Very little was learned about how to predict thermal stress although ways to accommodate it in a
flight program were learned. The detail required to computer model the heat transfer and the structure
became evident. The YF-12A structures and loads effort was a particularly productive effort because a
great deal of flight, laboratory test, and computational data were produced and cross-correlated. Much
fallout technology was produced, and much insight into the direction of future research was revealed. 

Dryden Flight Research Center
National Aeronautics and Space Administration
Edwards, California, October 24, 1995
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